Find the indefinite integral of x^8*ln(3x) using integration by parts

For this method we need to choose our u and dv/dx. Using the Late method (Logarithm, algebra, trigonometric, exponential), we can pick our u value which will be ln(3x). du/dx is therefore 1/x, using the chain rule. dv/dx = x^8, therefore v = (x^9)/9. Using the integration by parts formula, which is u*v - int[(du/dx)v] which equals (x^9/81)(9ln(3x)-1) + C, where C is a constant of integration

JB
Answered by Joel B. Maths tutor

5814 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the substitution x = 2cosu, find the integral of dx/((x^2)(4-x^2)^1/2), evaluated between x=1 and x=sqrt(2).


If z is a complex number, solve the equation (z+i)* = 2iz+1 where the star (*) denotes the complex conjugate.


differentiate ln( x^2 )


How would I prepare for my Maths exams so that I get the best grade possible?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning