Find the indefinite integral of x^8*ln(3x) using integration by parts

For this method we need to choose our u and dv/dx. Using the Late method (Logarithm, algebra, trigonometric, exponential), we can pick our u value which will be ln(3x). du/dx is therefore 1/x, using the chain rule. dv/dx = x^8, therefore v = (x^9)/9. Using the integration by parts formula, which is u*v - int[(du/dx)v] which equals (x^9/81)(9ln(3x)-1) + C, where C is a constant of integration

JB
Answered by Joel B. Maths tutor

5527 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

solve dy/dx = y(sec x)^2


integrate( x^3+4x^2+3)dx


A straight line passes through the point (2,1) and has a gradient of 3. Find the co-ordinates where the line crosses the x and y axes


Suppose that you go to a party where everyone knows at least one other person, you get a bit bored and wonder whether there are at least two people which know the same number of people there.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning