Differentiate xcos(x) with respect to x

We have two functions multiplied together: x and cos(x).

Therefore we have to use the product rule.

First differentiate x and leave cos(x) untouched, so we get 1(cos(x))=cos(x). Then differentiate cos(x) and leave x untouched giving us x(-sin(x))=-xsin(x).

Finally add the two parts together which gives us cos(x) + -xsin(x)=cos(x)-xsin(x).

IL
Answered by Ioannis L. Maths tutor

44628 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can you express the complex number z = 2 + 3i in the form z = r(cos x + i sinx)


Let R denote the region bounded by the curve y=x^3 and the lines x=0 and x=4. Find the volume generated when R is rotated 360 degrees about the x axis.


Core 3 Differentiation: If y = (3x^2 + 2x + 5)^10, find its derivative, dy/dx. Hint: Use the chain rule.


integrate function (x^4+3x)/(x^2) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning