You are given the equation y=x^2. Determine whether or not the equation has any maximums or minimums and identify them (whether they are maximums or minimums).

The question has given us a function and wants us to determine whether or not any maximums/minimums exist (and if so identify then). We know maximums/minimums occur when the derivative of the equation is equal to zero. Hence we can different x^2 with respect to x, this gives us dy/dx=2x. As mentioned, the point occurs when dy/dx (the derivative) is zero. This gives us 2x=0, hence x=0, is going to be either a maximum or minimum.To determine which one it is, we must differentiate again. Differentiating 2x with respect to x gives us 2. As 2 is greater than 0, we know this is a minimum. (If it was negative, it would be a maximum, and if it equals zero it will be a stationary point of inflection.)

LM
Answered by Lana M. Maths tutor

3102 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the function f(x)=ax^2+bx+c, we are given that it has x-intercepts at (0,0) and (8,0) and a tangent with slope=16 at the point x=2. Find the value of a,b, and c.


What are the roots of y=x^2+5x+6 ?


How do changes to the coefficient of x affect the graph y = f(x) as opposed to changes to the coefficient of f(x)?


X=4x^2 + 5x^7 - sin(3x) find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning