You are given the equation y=x^2. Determine whether or not the equation has any maximums or minimums and identify them (whether they are maximums or minimums).

The question has given us a function and wants us to determine whether or not any maximums/minimums exist (and if so identify then). We know maximums/minimums occur when the derivative of the equation is equal to zero. Hence we can different x^2 with respect to x, this gives us dy/dx=2x. As mentioned, the point occurs when dy/dx (the derivative) is zero. This gives us 2x=0, hence x=0, is going to be either a maximum or minimum.To determine which one it is, we must differentiate again. Differentiating 2x with respect to x gives us 2. As 2 is greater than 0, we know this is a minimum. (If it was negative, it would be a maximum, and if it equals zero it will be a stationary point of inflection.)

LM
Answered by Lana M. Maths tutor

2843 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the value of the definite integral (x^3 + 3x + 2) with limits x=2 and x=1


if f is defined on with f(x)=x^2-2x-24(x)^0.5 for x>=0 a) find 1st derivative of f, b) find second derivative of f, c) Verify that function f has a stationary point when x = 4 (c) Determine the type stationary point.


Shower-cleaner liquid is sold in spray bottles. The volume of liquid in a bottle may be modelled by a normal distribution with mean 955 ml and a standard deviation of 5 ml. Determine the probability that the volume in a particular bottle is:


dy/dx= 2x/2 - 1/4x, what is d2y/dx2?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning