Find minimum and maximum of x^2+1 if they exist

There are several methods of finding the extrema(plural of extremums or in other words minimum or maximum values) of a function.

For now we will analyse the function using the dy/dx of f(x)=y=x+1, f`(x) = 2x
The sign of the diferentiation of the function change at x=0. Therefore for x<0 dy/dx<0 and the function is declining. For x>0 dy/dx>0 and the function is uprising. We can conclude that there is a minimum at x=0. We cannot find a maximum of the function as it approaches infinity.
 

PG
Answered by Pavel G. Maths tutor

4707 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you take the derivative of a^x ?


Prove that cos(4x) = 8(cos^4(x))-8(cos^2(x)) + 1


Differentiate y=ln(ln(x)) with respect to x.


Find the tangent to the curve y=(3/4)x^2 -4x^(1/2) +7 at x=4, expressing it in the form ax+by+c=0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning