Use the substitution u = cos 2x to find ∫(cos^2*(2x) *sin3 (2x)) dx

∫(cos2 2x *sin3 2x)dx u = cos2x - u =(du/dx) = -2sin2x - differentiate u dx = du/(-2sin(2x)) - dx = -1/2 ∫cos22x * sin22x du - sub in dx-1/2 ∫u2(1-u2)du - put in terms if u -1/2 [ u3/3 - u5/5 ] + c - integrate in terms of u (cos52x)/10 - (cos32x)/6 - Final answer





WB
Answered by Will B. Maths tutor

7474 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the derivative of y = (3x-2)^1/2 ?


Find the coordinates of the maximum stationary point of the y = x^2 +4x curve.


The variable x=t^2 and the variable y=2t. What is dy/dx in terms of t?


An arithmetic progression has a tenth term (a10) = 11.1 and a fiftieth term (a50) = 7.1 Find the first term (a) and the common difference (d). Also find the sum of the first fifty terms (Sn50) of the progression.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences