Use the substitution u = cos 2x to find ∫(cos^2*(2x) *sin3 (2x)) dx

∫(cos2 2x *sin3 2x)dx u = cos2x - u =(du/dx) = -2sin2x - differentiate u dx = du/(-2sin(2x)) - dx = -1/2 ∫cos22x * sin22x du - sub in dx-1/2 ∫u2(1-u2)du - put in terms if u -1/2 [ u3/3 - u5/5 ] + c - integrate in terms of u (cos52x)/10 - (cos32x)/6 - Final answer





WB
Answered by Will B. Maths tutor

7834 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(FP3 question). Integrate 1/sqrt(3-4x-x^2).


By completing the square, find the values of x that satisfy x^4 -8x^2 +15 = 0


The normal to the curve C when x=1 intersects the curve at point P. If C is given by f(x)=2x^2+5x-3, find the coordinates of P


Maths


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning