Use the substitution u = cos 2x to find ∫(cos^2*(2x) *sin3 (2x)) dx

∫(cos2 2x *sin3 2x)dx u = cos2x - u =(du/dx) = -2sin2x - differentiate u dx = du/(-2sin(2x)) - dx = -1/2 ∫cos22x * sin22x du - sub in dx-1/2 ∫u2(1-u2)du - put in terms if u -1/2 [ u3/3 - u5/5 ] + c - integrate in terms of u (cos52x)/10 - (cos32x)/6 - Final answer





WB
Answered by Will B. Maths tutor

7745 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 4sinx-cos(pi/2 - x) as a single trignometric function


By using the substitution, x = 2sin(y) find the exact value of integral sqrt(1/3(4-x^2)) dx with limits 0 and 1.


Differentiate the following equation with respect to x; sinx + 3x^2 - 2.


Differentiate: sin(x) + 2x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning