How do we differentiate y=a^x when 'a' is an non zero real number

Firstly we must change it into a form we can deal with. To do this we take the natural log (ln) of both sides.ln(y)=ln(ax) ln(y)=x(ln(a))    using our rules of logsFrom here we differentiate. The differential of ln(f(x)) is [(d/dx)f(x)]/f(x)(dy/dx)/y=ln(a)      differentiating from above rule and ln(a) is just a constant so d/dx xln(a)= ln(a)dy/dx=yln(a)    times both sides by ydy/dx=(ax)(ln(a)) subbing in y=ato get dy/dx in terms of x

MJ
Answered by Marcus J. Maths tutor

8094 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve inequality: sqrt(x^2) + x < 1


Differentiate (x^2)cos(3x) with respect to x


Find a solution for the differential equation dy/dx=exp(-y)*sin2x which passes through the origin.


A curve is described by the equation x^3 - 4y^2 = 12xy. a) Find the points on the curve where x = -8. b) Find the gradient at these points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning