How do we differentiate y=a^x when 'a' is an non zero real number

Firstly we must change it into a form we can deal with. To do this we take the natural log (ln) of both sides.ln(y)=ln(ax) ln(y)=x(ln(a))    using our rules of logsFrom here we differentiate. The differential of ln(f(x)) is [(d/dx)f(x)]/f(x)(dy/dx)/y=ln(a)      differentiating from above rule and ln(a) is just a constant so d/dx xln(a)= ln(a)dy/dx=yln(a)    times both sides by ydy/dx=(ax)(ln(a)) subbing in y=ato get dy/dx in terms of x

MJ
Answered by Marcus J. Maths tutor

8086 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate with respect to x: (x^3)(e^x)


Solve the differential equation dy/dx = 6xy^2 given that y=1 when x=2.


Find dy/dx when y = (3x - 1)^10


A fair die has six faces numbered 1, 1, 1, 2, 2, and 3. The die is rolled twice and the number showing on the uppermost face is recorded. Find the probability that the sum of the two numbers is at least three.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning