A curve is defined by the parametric equations x = 2t and y = 4t^2 + t. Find the gradient of the curve when t = 4

the gradient of the curve = dy/dx
and dy/dx = (dy/dt)(dt/dx)
dy/dt = 8t + 1
dx/dt = 2 therefore dt/dx = 1/2
dy/dx as above = (8t + 1) * 1/2 = (8t + 1)/2
where t = 4, dy/dx = (8*4 + 1)/2 = (32 + 1)/2 = 33/2

AB
Answered by Angus B. Maths tutor

5282 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Curve C has equation x^2 - 3xy - 4y^2 + 64 = 0. a) find dy/dx in terms of x and y. b) find coordinates where dy/dx=0.


A particle of mass m moves from rest a time t=0, under the action of a variable force f(t) = A*t*exp(-B*t), where A,B are positive constants. Find the speed of the particle for large t, expressing the answer in terms of m, A, and B.


The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 +2x+3. Express f(x) in a fully factorised form.


Work out the equation of the tangent at x = 3, knowing that f(x) =x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning