P (–1, 4) is a point on a circle, centre O which is at the origin. Work out the equation of the tangent to the circle at P. Give your answer in the form y = mx + c

A tangent makes an angle of 90 degrees with the radius of a circle.Using this fact, we find the gradient of the radius going through P = -4Therefore gradient of the tangent to the circle at P is -1/-4 = 1/4Then use equation for a straight line: y - y1 = m(x-x1) where x1 and y1 are the x and y coordinates of P respectively (-1,4)So we get that y = (1/4) x + 17/4

CG
Answered by Charlie G. Maths tutor

8994 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are a total of 50 apples and pears (apples + pears) in a large basket. If the total number of apples was doubled and the total number of pears was tripled, these two numbers would add up to 130. How many apples and pears are in the basket?


Differentiate the following equation, y = x^9 + 3x^2 + x^(-1)


Find the values of x for the equation: x^2 - 8x = 105


Factorise and solve x^2-8x+15=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences