P (–1, 4) is a point on a circle, centre O which is at the origin. Work out the equation of the tangent to the circle at P. Give your answer in the form y = mx + c

A tangent makes an angle of 90 degrees with the radius of a circle.Using this fact, we find the gradient of the radius going through P = -4Therefore gradient of the tangent to the circle at P is -1/-4 = 1/4Then use equation for a straight line: y - y1 = m(x-x1) where x1 and y1 are the x and y coordinates of P respectively (-1,4)So we get that y = (1/4) x + 17/4

CG
Answered by Charlie G. Maths tutor

9799 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Triangle ABC has perimeter 20 cm. AB = 7 cm. BC = 4 cm. By calculation, deduce whether triangle ABC is a right-angled triangle.


Solve the following pair of simultaneous equations: 2y - x = 3, y + 4x = 4


The normal price of the pair of shoes is £28. In a sale the price is reduced by 35%. What is the new price of the shoes?


Solve the simultaneous equation 6y+3x=24, 4y+5x=28


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning