Find the equation of the tangent to the curve y = x2 -3x +5 at the point (1,3).

Find the equation of the tangent to the curve y = x2 -3x +5 at the point (1,3).The tangent is a straight line of the form y = mx+cTo find the gradient, m, we first differentiate the function:dy/dx = 2x -3Then we evaluate at the point (1,3). At this point x =1 , so dy/dx = 2(1) -3 = -1So m = -1, and therefore the tangent is of the form y = -x +cTo find c, we know that the point (1,3) must lie on the tangent and so we substitute these values for x and y into our equation:3 = -(1) +cRearranging gives c = 4Therefore the equation of the tangent is y = -x + 4

TD
Answered by Tilly D. Maths tutor

6694 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Show that 12 cos 30° - 2 tan 60° can be written in the form√ k where k is an integer


Work out 51% of 400? (No calculator)


Factorise and solve X^2+8X+15=0


What is the gradient and the y-intercept of the graph y = 3x + 7 ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning