Find the equation of the tangent to the curve y = x2 -3x +5 at the point (1,3).

Find the equation of the tangent to the curve y = x2 -3x +5 at the point (1,3).The tangent is a straight line of the form y = mx+cTo find the gradient, m, we first differentiate the function:dy/dx = 2x -3Then we evaluate at the point (1,3). At this point x =1 , so dy/dx = 2(1) -3 = -1So m = -1, and therefore the tangent is of the form y = -x +cTo find c, we know that the point (1,3) must lie on the tangent and so we substitute these values for x and y into our equation:3 = -(1) +cRearranging gives c = 4Therefore the equation of the tangent is y = -x + 4

TD
Answered by Tilly D. Maths tutor

6461 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the Simultaneous Equations -3X + 4Y=11 & X-2Y = -5 to find the values of X and Y


Solve the simultaneous equations: 4x + 7y = 1, 3x + 10y = 15.


Can you explain how to divide mixed number fractions?


There are 9 counters in a bag. 7 of the counters are green. 2 of the counters are blue. Two counters are chosen at random, what is the probability one counter of each colour is chosen.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences