The curve C has an equation y = sin(2x)cos(x)^2. Find dy/dx. Find normal to curve at x = pi/3 rad, giving answer in exact form.

Student should use a combination of trigonometric identities, product rule and chain rule to find dy/dx.This can be done by applying product rule, obtainingdy/dx = sin(2x). d[cos(x)^2]/dx + cos(x)^2. d[sin(2x)]/dxthen using the chain rule to find d[cos(x)^2]/dx = -2cos(x)sin(x) andd[sin(2x]/dx = 2cos(2x).Alternatively, the student can rewrite cos(x)^2 as ½[cos(2x)-1] then differentiate in this form.Student should finddy/dx = 2cos(x)[cos(x)cos(2x) – sin(x)sin(2x)].
Substituting x= pi/3 into equation of curve returns corresponding y-value at that point, and substituting x = pi/3 into dy/dx returns gradient of tangent at that point. Diving -1 by this returns the gradient of the normal at that point. Using equation of a straight line y=mx+b, student should obtain b by rearranging at substituting x and y values found earlier. Students should find y = x + [(3sqrt(3) – 8pi)/24)]

SC
Answered by Sunchi C. Maths tutor

4080 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

At each point P of a curve for which x > 0 the tangent cuts the y-axis at T, and N is the foot of the perpendicular from P to the y-axis. If T is always 1 unit below N and the curve passes through the point (1,0), find the Cartesian equation of the curve.


How do you integrate xcos(x)?


Find the centre coordinates, and radius of the circle with equation: x^2 + y^2 +6x -8y = 24


Find the integral of e^3x/(1+e^x) using the substitution of u=1+e^x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning