Solve the following simultaneous equations: x^2 + y^2 = 29 and y - x =3

This question is slightly trickier than normal simultaneous equations, because we have values to the power of 2. What we can do is make either y or x the subject of the 2nd equation (y-x = 3). For this example, I will choose to make y the subject, which then gives us y = 3 + x. We can use this equation, and substitute it into the value of "y" in the 1st equation, as follows --> x^2 + (3+x)^2 = 29 We can then expand the brackets and simplify: x^2 + x^2 + 6x + 9 = 29 2x^2 + 6x -20 = 0 (it is important to make the equation equal to 0 so that we can solve the equation to find the values of x) x^2 + 3x - 10 = 0 (we can divide the whole equation by 2, as this is a common factor) (x + 5) (x - 2) = 0 (we can factorise the equation to give us 2 brackets; we have found two numbers which multiply to give -10 and add to give +3) .˙. x = -5 and x = 2 (each bracket is made equal to 0 and solved separately, we have two values for x because this is a quadratic equation)Each value is then substituted back into the rearranged 2nd equation (y = 3 + x) which gives us y = -2 and y = 5

TD
Answered by Trushna D. Maths tutor

3731 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

a right-angled triangle has base 2x + 1, height h and hypotenuse 3x. show that h^2 = 5x^2 - 4x - 1


Factorise and solve x^2 – 8x + 15 = 0


A fridge of height 2m and width 0.8m is tilted in a delivery van so that one edge rests on the edge of a table and another touches the ceiling, as shown in the diagram. The total height of the inside of the van is 1.5m. Find the height of the table.


Please factorise fully: 2a^2 + 6a


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning