Given the points P(-1,1) and S(2,2), give the equation of the line passing through P and perpendicular to PS.

First, we can find the slope of the line PS, with the help of the formula m = (y2- y1)/(x2- x1) or if we substitute for the given points mPS = (2 - 1)/(2 - (-1)) = (-1)/(3)= -1/3. Since the line l passing through P is perpendicular to PS, for l's slope ml and PS's slope mPS we know that mPCml=-1. From 1/3 * ml = -1 we can conclude that ml = -3. Any line's equation can be represented in the form y = mx + b - so l's equation is y = -3x + b, and b = y + 3x. If we substitute (x,y) for the coordinates of P(-1,1), we will get b = 1 - 3 = -2. Finally, l's equation can be written as y = -3x -2 or 3x + y + 2 = 0.

KS
Answered by Kalina S. Maths tutor

3174 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that (2x-1) : (x-4) = (16x+1) : (2x-1), find the possible values of x


Write down three linear factors of f(x) such that the curve of f(x) crosses the x axis at x=0.5,3,4. Hence find the equation of the curve in the form y = 2(x^3) + a(x^2) + bx + c.


A curve has equation -2x^3 - x^2 + 20x . The curve has a stationary point at the point M where x = −2. Find the x-coordinate of the other stationary point of the curve.


For sketching the graph of the modulus of f(x) (in graph transformations), why do we reflect in the x-axis anything that is below it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning