Triangle ABC has perimeter 20 cm. AB = 7 cm. BC = 4 cm. By calculation, deduce whether triangle ABC is a right-angled triangle. 4 marks.

We know that the perimeter of the triangle is 20cm and we also know the value of two of the sides of the triangle, AB=7cm and BC=4cm. We can work out the length of the third side (AC) by subtracting the known lengths from the perimeter:20 - 7 - 4 = 9 Therefore, the length AC is 9.If ABC were a right angle triangle, we'd be able to use Pythagoras's Theorem to work out the length AC. AC is the hypotenuse of the triangle because it is the longest length.Pythagoras's Theorem: a2 + b2 = c242 + 72 = 16 + 49 = 65Where AC = c, c2 = 65 If c = 9, then c2 = 81, however when using Pythagoras, c2 = 65.Therefore, Pythagoras's Theorem cannot be use and the triangle ABC is not a right-angle triangle.






CM
Answered by Charlotte M. Maths tutor

21283 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the quadratic equation X^2+3X+2=0 by factorisation.


The points (0, -5) and (5, 0) lie on a curve y=x^2 + ax + b. Find the stationary points on the curve.


In a village the number of houses and the number of flats are in the ratio 7 : 4. The number of flats and the number of bungalows are in the ratio 8 : 5 . There are 50 bungalows in the village. How many houses are there in the village?


How would I simplify (3x^2 − 8x − 3)/(2x^2 −6x) fully?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning