Find the stationary points of the graph x^3 + y^3 = 3xy +35

Differentiate wrt x to get 3x2 + 3y2dy/dx = 3y + 3x dy/dx Rearrange to get dy/dx = (3x2 - 3y)/(3x-3y2). Set dy/dx =0 and infer y=x2. Substitute in for y into original equation and rearrange to get x6 -2x3 -35 =0. Let p= x3 . Equation in terms of p becomes p2 -2p -35 =0. p=7 or -5. Therefore stationary points are (7(1/3), 7(2/3)) and (-5(1/3), -5(2/3)).

JB
Answered by Joe B. Maths tutor

9433 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the factor theorem, factorise x^4 - 3x^3 - 3x^2 + 11x - 6


Express square root of 48 in the form n x square root of 3 , where n is an integer


Find the coordinates of the stationary point of the graph y = 3x^2 - 12x


let line L have the equation 4y -3x =10, and line M passes through the points (5,-1) and (-1,8), find out if they are perpendicular, parallel, or neither


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning