Using the identity cos(A+B)= cosAcosB-sinAsinB, prove that cos2A=1-2sin^2A.

Use cos(A+B)=cosAcosB-sinAsinB and let A=B so cos(A+A)=cosAcosA-sinAsinA this means cos(2A)=cos2A-sin2A and since cos2A+sin2A=1, cos2A=1-sin2A. Therefore, by subbing cos2A=1-sin2A into cos(2A)=cos2A-sin2A, we get cos(2A)=1-sin2A-sin2A=1-2sin2A.

RF
Answered by Rebecca F. Maths tutor

21028 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx if y=(x^3)(e^2x)


dx/dt=-5x/2 t>=0 when x=60 t=0


Find the stationary point(s) of the curve: y = 3x^4 - 8x^3 - 3.


differentiate the following equation: y = x^2 + 2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning