Using the identity cos(A+B)= cosAcosB-sinAsinB, prove that cos2A=1-2sin^2A.

Use cos(A+B)=cosAcosB-sinAsinB and let A=B so cos(A+A)=cosAcosA-sinAsinA this means cos(2A)=cos2A-sin2A and since cos2A+sin2A=1, cos2A=1-sin2A. Therefore, by subbing cos2A=1-sin2A into cos(2A)=cos2A-sin2A, we get cos(2A)=1-sin2A-sin2A=1-2sin2A.

RF
Answered by Rebecca F. Maths tutor

21916 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the equation of the tangent at the point (2,1) of the curve with equation x^2 + 3x + 4.


Express x^2 - 7x + 2 in the form (x - p)^2 + q , where p and q are rational numbers.


x = t^3 + t, y = t^2 +1, find dy/dx


Simplify (5-2√3)/(√3-1) giving your answer in the form p +q√3, where p and q are rational numbers


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning