Using the identity cos(A+B)= cosAcosB-sinAsinB, prove that cos2A=1-2sin^2A.

Use cos(A+B)=cosAcosB-sinAsinB and let A=B so cos(A+A)=cosAcosA-sinAsinA this means cos(2A)=cos2A-sin2A and since cos2A+sin2A=1, cos2A=1-sin2A. Therefore, by subbing cos2A=1-sin2A into cos(2A)=cos2A-sin2A, we get cos(2A)=1-sin2A-sin2A=1-2sin2A.

RF
Answered by Rebecca F. Maths tutor

20212 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to integrate lnX?


Solve the equation 5^x = 8, giving your answer to 3 significant figures.


Differentiate, with respect to x, e^3x + ln 2x,


By forming and solving a quadratic equation, solve the equation 5*cosec(x) + cosec^2(x) = 2 - cot^2(x) in the interval 0<x<2*pi, giving the values of x in radians to three significant figures.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences