Solve the simultaneous equations..... 3x - y + 3 = 11 & 2x^2 + y^2 + 3 = 102 where X and Y are both positive integers.

Here we have two equations with two unknowns, the method we use to solve this is substitution. First, find one of the unknowns in terms of the other by rearranging the first equation to arrive at y = 3x - 8, then, substitute this into the second equation. Then expand the brackets and collate like terms and you arrive at 11x^2 - 48x + 67 = 102. By equating to zero you get.... 11x^2 - 48x - 35 = 0. This should now be recognised as a quadratic equation you can solve by factorising.... (11x + 7 ) (x - 5) = 0. Therefore x is either 5 or -7/11.However we must remember the question states X and Y are both positive thus we reject X = - 7/11. Finally take X = 5 and substitute it back into either of the original equations and solve for Y. You'll find that Y = 7.

RW
Answered by Reuben W. Maths tutor

3521 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the equation 3a^2+4a+1=3 for all values of a. Give your answers to 3 significant figures.


Given that y r 1 2 x , complete this table of values. x 1 2 5 10 y 1


What is Pythagorus Theorem ? Find the length of BC if given a right angle triangle ABC where AB is 8cm and the length of the hypotenuse AC is 10cm ?


You are given a square which you are told has a total area of 100 squared centimetres. You are also told that one side of the square has dimension 4(3x + 2), and the other has dimension 8x - y. What are the values of x and y?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning