Solve the simultaneous equations..... 3x - y + 3 = 11 & 2x^2 + y^2 + 3 = 102 where X and Y are both positive integers.

Here we have two equations with two unknowns, the method we use to solve this is substitution. First, find one of the unknowns in terms of the other by rearranging the first equation to arrive at y = 3x - 8, then, substitute this into the second equation. Then expand the brackets and collate like terms and you arrive at 11x^2 - 48x + 67 = 102. By equating to zero you get.... 11x^2 - 48x - 35 = 0. This should now be recognised as a quadratic equation you can solve by factorising.... (11x + 7 ) (x - 5) = 0. Therefore x is either 5 or -7/11.However we must remember the question states X and Y are both positive thus we reject X = - 7/11. Finally take X = 5 and substitute it back into either of the original equations and solve for Y. You'll find that Y = 7.

RW
Answered by Reuben W. Maths tutor

3575 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you calculate the area of a triangle when the question tells you the length of all three sides but no angles?


Solve 5x - 7 = 3x + 2, to find the value of x


5 tins of soup have a total weight of 1750 grams. 4 tins of soup and 3 packets of soup have a total weight of 1490 grams. Work out the total weight of 3 tins of soup and 2 packets of soup.


Make x the subject of the equation. y = 4( 2 + x )/ (6x -1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning