Find ∫ (2x^5 - 1/(4x^3)-5) dx. giving each term in its simplest form.

with integration you need to increase the power and divide through by the new power for each term in the equation.2x5 goes to 2x6/6 = x6/3-1/(4x3) is equal to -x-3/4 which then goes to -x-2/4/-2 = x-2/8 = 1/8x2-5 goes to -5xwith integration a constant is also added to the end. this is due to the constant disappeareing during differentiation which is the reverse of integration.so the final solution is :x6/3 + 1/8x2 - 5x + c

KY
Answered by Kieran Y. Maths tutor

5790 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find f''(x), Given that f(x)=5x^3 - 6x^(4/3) + 2x - 3


How would you solve the inequality x^2-2x-8 >= 0?


When trying to solve inequalities (e.g. 1/(x+2)>x/(x-3)) I keep getting the wrong solutions even though my algebra is correct.


What are the conditions for an event to be modeled with the binomial distribution?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning