A cricket player is capable of throwing a ball at velocity v. Neglecting air resistance, what angle from the horizontal should they throw at to achieve maximum distance before contact with the ground? How far is that distance?

Assume angle of throw theta. Resolving vertical and horizontal components: Vvert=v.sin(theta) and Vhoriz=v.cos(theta).From 'suvat' equations, time to vertical stationary t=v/a. This must be doubled to find the total airborne time. Using the speed above and acceleration being only gravity, we have t=2.v.sin(theta)/g.Horizontal speed remains constant, so we can find total horizontal distance travelled with s=ut=v.cos(theta).2.v.sin(theta)/g.Using the trig equality sin(2.theta)=2.sin(theta).cos(theta) that can be derived from a data book equation, we can simplify to s=v^2.sin(2.theta)/g.We wish to maximise this distance, however v and g are constant. Therefore we need to maximise sin(2.theta). This can be done by differentiation or simply by noting that the maximum of a sin graph is at 90deg. Therefore 2.theta=90deg, and theta=45deg.Knowing this, and substituting, we find that distance s=v^2/g.

BW
Answered by Benjamin W. Maths tutor

3559 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If I am given a line, how do I find a line that is parallel to it? What about perpendicular?


A curve C has equation y = (2 - x)(1 + x) + 3 . A line passes through the point (2, 3) and the point on C with x-coordinate 2 + h . Find the gradient of the line, giving your answer in its simplest form.


Write 5cos(theta) – 2sin(theta) in the form Rcos(theta + alpha), where R and alpha are constants, R > 0 and 0 <=alpha < 2 π Give the exact value of R and give the value of alpha in radians to 3 decimal places.


What are radians and what are they used for?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning