Solve the simultaneous equations: 2x+5y=25, x=y+2

using our second equation, we can see that x=y+2. Therefore we can sub x into the first equation. This will give us 2*(y+2)+5y=25. We can go ahead and expand the brackets, which gives us 2y+4+5y=25. We can combine the y terms which gives 7y+4=25. We can take 4 away from both sides with gives 7y=21, and divide both sides by 7 so y=3. We can sub 3 into y in the original equation, to give that x=5.

LW
Answered by Louis W. Maths tutor

3849 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

1: x = 2, 2: y = x + 5 -> Solve this pair of simultaneous equations.


Sam takes out a £720 loan. Sam will have to pay back the £720 plus an interest rate of 15%. He will have to pay this back in 12 equal monthly instalments. How much must Sam pay monthly?


Solve these simultaneous equations and find the values of x and y. Equation 1: 2x + y = 7 Equation 2: 3x - y = 8


Solve simultaneously: 2x + y = 18 and x - y = 6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning