How do you integrate e^x cos x

∫ excos x dx 

First of all, we have to think of which method we want to use to approach this problem. There are a few options we can consider such as integration by parts and substitution. In this case, integration by parts would be suitable.

Now we have to recall the integration by parts formula which is

∫ u dv/dx dx = uv - ∫ v du/dx dx
From the problem above, 
we can set u= cos x and dv/dx = ex  

du/dx = -sin x and v= ex

∫ excosx dx = excos x - ∫ ex (-sin x) dx
                   = excos x + ∫ exsinx dx

Now we have to repeat the integration by parts process again for ∫ ex sin x dx
Let u= sin x and dv/dx = ex

       du/dx = cos x and v= ex

 ∫ ex cos x dx = excos x + ( ex sin x - ∫ ex cos x dx )

2 ∫excos x dx = ecos x + esin x
∫  ex cos x dx = 1/2 ( excos x + ex sin x ) 

TJ
Answered by Ta J. Maths tutor

53268 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = 2t^2, and x = 3t^3 - 2. Find dy/dx in terms of t.


a curve has an equation: y = x^2 - 2x - 24x^0.5 x>0 find dy/dx and d^2y/dx^2


A curve has the equation 2x^2 + xy - y^2 +18 = 0. (1) Find the coordinates of the points where the tangent to the curve is parallel to the x-axis.


Differentiate y=(x^2+1)(e^-x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences