A curve with equation y=f(x) passes through point P at (4,8). Given that f'(x)=9x^(1/2)/4+5/2x^(1/2)-4 find f(X).

To find f(x) using its derivative, first integrate f'(x) with respect to x using the 'add one to the power and divide by the new power' technique remembering to add the constant c. To make this easier, turn the denominator x to a numerator with a negative power and let the square roots be shown as powers of a half. f(x) = integral f'(x) dx = (9/4)(2/3)x^(3/2)+(5/2)(2/1)x^(1/2)-4x+c = 3x^(3/2)/2+5x^(1/2)-4x+c Then find a value for c. To do this, substitute into f(x) the known value of x from the given point P and set it equal to the known value of y, also from point P. Then rearrange to solve for c. when x = 4, y = 8 f(x) = 12+10-16+c = 8c = 2Sub this found value back in to find f(x). f(x) = 3x^(3/2)/2 + 5x^(1/2) - 4x + 2

EC
Answered by Em C. Maths tutor

3948 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

OCR C2 2015 Question 8: (a) Use logarithms to solve the equation 2^(n-3) = 18,000 , giving your answer correct to 3 significant figures. (b) Solve the simultaneous equations log2(x) + log2(y) = 8 & log2(x^2/y) = 7.


How do I find the stationary points on the curve y = f(x) = x^3+6x^2-36x?


F ind all values of x in the range 0° <= x <= 180° satisfying tan(x+45°)= 8tan(x)


State the conditions under which a binomial distribution can be approximated as a normal distribution, and state how the parameters needed would be calculated.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning