(Core 3 level) Integrate the function f(x) = 2 -cos(3x) between the bounds 0, pi/3.

f(x) = 2 - cos(3x)integrate function x term2 -> 2x (raise power of x then divide by new power for polynomial functions of x) -cos(3x) -> -(1/3)(sin(3x)) (using a substitution of 3x = u, then cos(u) integrates to sin(u)) Answer:2x - (1/3)(sin(3x)) + csubstituting bounds,(2*(pi/2) - (1/3(sin(3pi/3))) - (20 - (1/3)(sin(30/3)) = 2pi/3 - 0 = 2pi/3.

RG
Answered by Riku G. Maths tutor

3569 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let f(x)=x^3 - 2x^2 + 5. For which value(s) of x does f(x)=5?


Why is the definite integral between negative limits of a function with positive values negative even though the area bound by the x-axis is positive? for example the integral of y=x^2 between x=-2 and x=-1


How do you intergrate ln(x)?


Given that (2x + 11 )/(2x + 1)(x + 3) ≡ A /(2x + 1) + B /(x + 3) , find the values of the constants A and B. Hence show that the integral from 0 to 2 (2x + 11)/ (2x + 1)(x + 3) dx = ln 15.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning