(Core 3 level) Integrate the function f(x) = 2 -cos(3x) between the bounds 0, pi/3.

f(x) = 2 - cos(3x)integrate function x term2 -> 2x (raise power of x then divide by new power for polynomial functions of x) -cos(3x) -> -(1/3)(sin(3x)) (using a substitution of 3x = u, then cos(u) integrates to sin(u)) Answer:2x - (1/3)(sin(3x)) + csubstituting bounds,(2*(pi/2) - (1/3(sin(3pi/3))) - (20 - (1/3)(sin(30/3)) = 2pi/3 - 0 = 2pi/3.

RG
Answered by Riku G. Maths tutor

3222 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

In the case of vectors, how do I find the shortest distance between a point and a line?


Why is the derivative of x^2 equal to 2x?


A curve has equation y = (x-1)e^(-3x). The curve has a stationary point M. Show that the x-coordinate of M is 4/3.


How do I get the eigenvalues, x, of a matrix, M, with eigenvectors, v?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning