How do you differentiate 2 to the power x?

let y=2x                 {take natural logs of both sides}

ln y = ln(2x)          {use rules of logs to change right hand side}

lny = xln2              {differentiate implicitly}

1/y dy/dx = ln2    {make dy/dx the subject}

dy/ dx       = y ln2  {write y in terms of x)

dy/dx = 2x . ln2

Therefore derivative of 2 to the power of x is 2x . ln2

 

This can be generalised as the derivative of a to the power of x (where a is a constant, a>0)  is  ax lna

JR
Answered by Jack R. Maths tutor

156563 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the following equations. Leave answers in simplest terms a)e^(3x-9)=8. b) ln(2y+5)=2+ln(4-y)


What is 'completing the square' and how can I use it to find the minimum point of a quadratic curve?


use the substitution u=2+ln(x) to show that int(e,1(ln(x)/x(2+ln(x)^2))dx)=p+ln(q) , where p and q are rational numbers.


Sketch 20x--x^2-2x^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning