How do you differentiate 2 to the power x?

let y=2x                 {take natural logs of both sides}

ln y = ln(2x)          {use rules of logs to change right hand side}

lny = xln2              {differentiate implicitly}

1/y dy/dx = ln2    {make dy/dx the subject}

dy/ dx       = y ln2  {write y in terms of x)

dy/dx = 2x . ln2

Therefore derivative of 2 to the power of x is 2x . ln2

 

This can be generalised as the derivative of a to the power of x (where a is a constant, a>0)  is  ax lna

JR
Answered by Jack R. Maths tutor

152718 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express cos(x) + (1/2)sin(x) in terms of a single resultant sinusoidal wave of the form Rsin(x+a)


Differentiate 3x^2 + 6x^5 + 2/x


Solve the simultaneous equations - x+y=2 and 4y^2 - x^2 = 11


solve 3 cos (2y )- 5 cos( y)+ 2 =0 where 0<y<360 degrees


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning