A curve is defined by the parametric equations x = 3^(-t) + 1, y = 2 x 2^(t). Show that dy\dx = -2 x 3^(2t).

Write 3^(t) as an expression involving x : We can rewrite x = 3^(-t) + 1 as x - 1 = 3^(-t) ; equivalently, 3^(t) = (x-1)^(-1). Substitute this expression into y, to write y in terms of x: y = 2 x 3^(t) = 2 x (x-1)^(-1). Differentiate y with respect to x, using the power rule:dy\dx = -2(x-1)^(-2). Substitute in the expression for 3^(t):dy\dx = -2(x-1)^(-2) = -2 x (3^(t))^(2) = -2 x 3^(2t)

MK
Answered by Maleeha K. Maths tutor

3593 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the addition formula for sin(x+y), find sin(3x) in terms of sin(x) and hence show that sin(10) is a root of the equation 8x^3 - 6x + 1


How can I find all the solutions to cos(3x) = sqrt(2)/2 for 0<=x<=2pi ?


Solve algebraically: 2x - 5y = 11, 3x + 2y = 7


Can you show me why the integral of 1/x is the natural log of x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning