The curve C has a equation y=(2x-3)^5; point P (0.5,-32)lies on that curve. Work out the equation to the tangent to C at point P in the form of y=mx+c

Firstly you should work out the first derivative of the equation y= After differentiating the equation, sub the x value of the point P into the first derivative. This should give you the gradient of the equation. After getting the gradient of the tangent, you could use the y and x value of point P and sub it into the equation of y=mx+c to work out the y intercept (c). This would give you the answer.

MR
Answered by Mohammed R. Maths tutor

3160 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the value of x for when f(x)=0. f(x)=9x^(2)-4


The curve C has equation 2x^2y+2x+4y-cos(pi*y)=17 A) Use implict differenciation to find dy/dx B) point P(3,0.5) lies on C, find the x coodinate of the point A at which the normal to C at P meets the x axis.


What is a hypothesis test


The equation x^3 - 3*x + 1 = 0 has three real roots; Show that one of the roots lies between −2 and −1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences