The curve C has a equation y=(2x-3)^5; point P (0.5,-32)lies on that curve. Work out the equation to the tangent to C at point P in the form of y=mx+c

Firstly you should work out the first derivative of the equation y= After differentiating the equation, sub the x value of the point P into the first derivative. This should give you the gradient of the equation. After getting the gradient of the tangent, you could use the y and x value of point P and sub it into the equation of y=mx+c to work out the y intercept (c). This would give you the answer.

MR
Answered by Mohammed R. Maths tutor

3514 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a logarithm?


Do the following vector equations intersect? l = (1 + μ)i + (2 - μ)j + (2μ - 5)k, and m = 2λi + 3j + (2 + λ)k.


Integrate 2x^5 - 1/4x^3 - 5


solve dy/dx = y(sec x)^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning