The curve C has a equation y=(2x-3)^5; point P (0.5,-32)lies on that curve. Work out the equation to the tangent to C at point P in the form of y=mx+c

Firstly you should work out the first derivative of the equation y= After differentiating the equation, sub the x value of the point P into the first derivative. This should give you the gradient of the equation. After getting the gradient of the tangent, you could use the y and x value of point P and sub it into the equation of y=mx+c to work out the y intercept (c). This would give you the answer.

MR
Answered by Mohammed R. Maths tutor

3053 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use integration by parts to find the integral of xsinx, with respect to x


Find the equation of the line perpendicular to the line y= 3x + 5 that passes through the point (-1,4)


How do you prove that (3^n)-1 is always a multiple of 2?


Integral of sin^x dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences