How do you integrate by parts?

This is one of the trickier methods of integration, and it requires some practise. The basic idea is to split a function which would be difficult to integrate into two parts. Differentiating one part and integrating the other will then lead to a function which is much easier to integrate.

The formula is that the integral of u dv = uv - the integral of v du. It is best demonstrated with an example:

Let's integrate f(x) = xcos(x)

We can see that x will disppear if we differentiate it, so let's set x = u and cos(x) = dv.

Differentiating u and integrating dv then gives du = 1 and v = sin(x)

Now we substitute these into the formula: xsin(x) - integral of sin(x)

Sin(x) is easy to integrate, it is just -cos(x). Now we have our answer! The integral of xcos(x) = xsin(x) + cos(x) + c, where c is our unknown (and always necessary!) constant of integration.

HM
Answered by Harry M. Maths tutor

5111 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the integral of ((3x-2)/(6x^2-8x+3)) with respect to x between x=2 and x=1. (hint use substitution u=denominator)


Solve 8(4^x ) – 9(2^x ) + 1 = 0


Use logarithms to solve 9^x=15


A new sports car accelerates using rockets at 5m/s for 30 seconds from some traffic lights and then decelerate for 45 seconds to a stop.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning