How do you integrate by parts?

This is one of the trickier methods of integration, and it requires some practise. The basic idea is to split a function which would be difficult to integrate into two parts. Differentiating one part and integrating the other will then lead to a function which is much easier to integrate.

The formula is that the integral of u dv = uv - the integral of v du. It is best demonstrated with an example:

Let's integrate f(x) = xcos(x)

We can see that x will disppear if we differentiate it, so let's set x = u and cos(x) = dv.

Differentiating u and integrating dv then gives du = 1 and v = sin(x)

Now we substitute these into the formula: xsin(x) - integral of sin(x)

Sin(x) is easy to integrate, it is just -cos(x). Now we have our answer! The integral of xcos(x) = xsin(x) + cos(x) + c, where c is our unknown (and always necessary!) constant of integration.

HM
Answered by Harry M. Maths tutor

5300 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

3 green balls, 4 blue balls are in a bag. A ball is removed and then replaced 10 times. What is the probability that exactly 3 green balls will be removed?


What are the main factors when deciding whether or not the Poisson distribution is a suitable model?


Find the angle between two lines with vector equations r1 = (2i+j+k)+t(3i-5j-k) and r2 = (7i+4j+k)+s(2i+j-9k)


How do you differentiate 2^x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning