Find dy/dx where y=e^(4xtanx)

Here, we must apply both chain and product rules. The chain rule can be used to find the derivative of a function in the form ef(x), like this one. However it is useful to know that this will result in the following: f'(x)ef(x)... in other words the solution is always the derivative of the power times the initial equation. Knowing this can save a lot of time in the exam- it appears a lot.Now, our only issue is finding the derivative of 4xtanx... this requires the product rule(the derivative of a product function uv= vdu+udv). In this example u=4x and v=tanx. Now du=4 and dv=sec2x. Slotting these into the above formula we get: 4tanx+4xsec2x. All that is left is to bring together these two parts to get: d(e4xtanx)/dx= (4tanx+4xsec2x)e4xtanx.

MK
Answered by Monique K. Maths tutor

6720 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

b) The tangent to C at P meets the coordinate axes at the points Q and R. Show that the area of the triangle OQR, where O is the origin, is 9/(3-e)


How would you differentiate and integrate 2x^3?


A curve is defined by the parametric equations x = 2t and y = 4t^2 + t. Find the gradient of the curve when t = 4


Given that f(x) = 1/x - sqrt(x) + 3. Find f'(1).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences