Use the Intermidiate Value Theorem to prove that there is a positive number c such that c^2 = 2.

This exercise is asking to prove the existance of the square root of 2. So let's consider the function f(x) = x^2. Since f(x) is a polynomial, then it is continuous on the interval (- infinity, + infinity). Using the Intermidiate Value Theorem, it would be enough to show that at some point a f(x) is less than 2 and at some point b f(x) is greater than 2. For example, let a = 0 and b = 3. Therefore, 

f(0) = 0, which is less than 2, and f(3) = 9, which is greater than 2. Applying IVT to f(x) = x^2 on the interval [0,3] and taking N=2, we can therefore guarantee the existance of a number c such that 0<c<2 and c^2 = 2. 

DK
Answered by Dilyana K. Maths tutor

9030 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

ABC is a right angled triangle. D is the point on AB such that AD = 3DB. AC = 2DB and angle A = 90 degrees. Show that sinC = k/√20 where k is an integer. Find the value of k


How do I factorise x^2 - 5x + 6


What is the length of a if a triangle has lengths of b=6.4cm and c=5.6cm with an angle A=107.9 degrees?


A common question would be how to factorise into two brackets, for example x^2 + 5x = -6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning