Use the Intermidiate Value Theorem to prove that there is a positive number c such that c^2 = 2.

  • Google+ icon
  • LinkedIn icon
  • 705 views

This exercise is asking to prove the existance of the square root of 2. So let's consider the function f(x) = x^2. Since f(x) is a polynomial, then it is continuous on the interval (- infinity, + infinity). Using the Intermidiate Value Theorem, it would be enough to show that at some point a f(x) is less than 2 and at some point b f(x) is greater than 2. For example, let a = 0 and b = 3. Therefore, 

f(0) = 0, which is less than 2, and f(3) = 9, which is greater than 2. Applying IVT to f(x) = x^2 on the interval [0,3] and taking N=2, we can therefore guarantee the existance of a number c such that 0

Dilyana K. GCSE Maths tutor, GCSE Physics tutor

About the author

is an online GCSE Maths tutor with MyTutor studying at Edinburgh University

Still stuck? Get one-to-one help from a personally interviewed subject specialist.

95% of our customers rate us

Browse tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok