How do you integrate by parts?

To integrate the product of two functions - say f(x) = xsinx, the product of g(x) = x and h(x) = sin(x) - the we use integration by parts. 

Since integration is the inverse of differentiation, we'll appeal to the Product Rule for differentiation to find a rule for integration. The Product Rule says that (fg)' = f'g + g'f. Rearranging giives:

f'g = (fg)' - g'f.

Integrating we have:

Integral(f'g) = Integral((fg)') - Integral(g'f), or:

Integral(f'g) = fg - Integral(g'f).

This is integration by parts. We designate one of the functions to be f' and one to be g. You can see on the far right we have another integral! For the method to be of use, we need to make the new integral simpler (or at least no more complicated) than the one we began with. So, we want g'f to be simpler then f'g: in other words, when we assign functions f' and g we want g to be the one that gets simpler when differentiated. Let's try an example: let's try and integrate xsinx dx. First, we will choose g to equal x, since x becomes 1 under differentiation, but sinx goes to cosx.

I = Integral(xsinx) = xIntegral(sinx) - Integral(x'Integral(sinx))

I = -xcosx - Integral(-cosx)

I = sinx - xcosx +C

So as long as we choose f' and g with some forethought, it's easy enough to integrate products of functions. Note: Ususally we denote the rule with f' = dv and g = du, so 

Integral u dv  = uv - Integral v du.

This is just a fancy way of stating what we've already established.

PK
Answered by Patrick K. Maths tutor

6344 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the intergral of 2x^5 - 1/4x^3 - 5 with respect to x.


Find the area under the curve of y=1/(3x-2)^0.5 between the limits x=1 and x=2 and the line y=0


What is the angle between the position vectors a and b, where a = (6i - j + 3k) and b = (-4i + 2j + 10k)?


A ball is kicked and has an instantaneous velocity of 19.6m/s at an angle of 30 degrees to the horizontal. A target lies flat on the ground in the direction the ball is kicked and lies at a distance of (98/5)*(3^1/2)m. Does the ball land on the target?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning