A curve has parametric equations: x=(t-1)^3 and y= 3t - 8/(t^2). Find dy/dx in terms of t. Then find the equation of the normal at the point on the curve where t=2.

dx/dt = 3(t-1)2dy/dt = 3 + 16t-3dy/dx=(dy/dt)(dt/dx) dy/dx = 3 + 16t-3 / 3(t-1)2
At t=2 dy/dx= (3 + 16/8) / 3 = 5/3 Gradient of the normal = -3/5with t=2 y-4=0x-1=0 y=mx + c y - 4 = -3/5(x-1) 3x +5y -23 = 0

JH
Answered by Jasmin H. Maths tutor

3492 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve, giving your answer to 3 s.f. : 2^(2x) - 6(2^(x) ) + 5 = 0


How do I find dy/dx for a given equation, once this is found how do I find the value of x such that dy/dx = 0.


How can we simplify sqrt(48) - 6/sqrt(3) ?


Differentiate (x^0.5)ln(x) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences