A curve has parametric equations: x=(t-1)^3 and y= 3t - 8/(t^2). Find dy/dx in terms of t. Then find the equation of the normal at the point on the curve where t=2.

dx/dt = 3(t-1)2dy/dt = 3 + 16t-3dy/dx=(dy/dt)(dt/dx) dy/dx = 3 + 16t-3 / 3(t-1)2
At t=2 dy/dx= (3 + 16/8) / 3 = 5/3 Gradient of the normal = -3/5with t=2 y-4=0x-1=0 y=mx + c y - 4 = -3/5(x-1) 3x +5y -23 = 0

JH
Answered by Jasmin H. Maths tutor

3973 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that Sec2A - Tan2A = (CosA-SinA)/(CosA+SinA)


Find f'(x) and f''(x) when f(x) = 3x^2 +7x - 3


proof for the derivative of sin(x) is cos(x) (5 marks)


Work out the equation of the normal to the curve y = x^3 + 2x^2 - 5 at the point where x = -2. [5 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning