A curve has parametric equations: x=(t-1)^3 and y= 3t - 8/(t^2). Find dy/dx in terms of t. Then find the equation of the normal at the point on the curve where t=2.

dx/dt = 3(t-1)2dy/dt = 3 + 16t-3dy/dx=(dy/dt)(dt/dx) dy/dx = 3 + 16t-3 / 3(t-1)2
At t=2 dy/dx= (3 + 16/8) / 3 = 5/3 Gradient of the normal = -3/5with t=2 y-4=0x-1=0 y=mx + c y - 4 = -3/5(x-1) 3x +5y -23 = 0

JH
Answered by Jasmin H. Maths tutor

3970 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the integral between the limits 0 and pi/2 of sin(x)cos(x) with respect to x.


Express Cosx-3Sinx in form Rcos(x+a) and show that cosx-3sinx=4 has no solution MEI OCR June 2016 C4


Solving a quadratic with ax^2 e.g. 2x^2 - 11x + 12 = 0


Differentiate with respect to x: x*cos(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning