A curve has equation y = f(x) and passes through the point (4, 22). Given that f ′(x) = 3x^2 – 3x^(1/2) – 7, use integration to find f(x), giving each term in its simplest form.

Firstly we can use the difference rule to split f'(x) into three components which we can consider separately. Then using the knowledge that the integral of x^n is 1/(n+1)*x^(n+1) we get the expression for f(x) as x^3 - 2x^(3/2) - 7x + C where C is an unknown constant.We find C by using the other information the question gives us- that when x=4, y =22. Plugging this into f(x) gives us the equation 22 = 20 +C, so C = 2. The final expression is therefore f(x) = x^3 - 2x^(3/2) - 7x + 2.

AS
Answered by Abbey S. Maths tutor

3969 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve, giving your answer to 3 s.f. : 2^(2x) - 6(2^(x) ) + 5 = 0


b) The tangent to C at P meets the coordinate axes at the points Q and R. Show that the area of the triangle OQR, where O is the origin, is 9/(3-e)


Solve the differential equation dy/dx = y/x(x + 1) , given that when x = 1, y = 1. Your answer should express y explicitly in terms of x.


differentiate 2^x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning