A curve has equation y = f(x) and passes through the point (4, 22). Given that f ′(x) = 3x^2 – 3x^(1/2) – 7, use integration to find f(x), giving each term in its simplest form.

Firstly we can use the difference rule to split f'(x) into three components which we can consider separately. Then using the knowledge that the integral of x^n is 1/(n+1)*x^(n+1) we get the expression for f(x) as x^3 - 2x^(3/2) - 7x + C where C is an unknown constant.We find C by using the other information the question gives us- that when x=4, y =22. Plugging this into f(x) gives us the equation 22 = 20 +C, so C = 2. The final expression is therefore f(x) = x^3 - 2x^(3/2) - 7x + 2.

AS
Answered by Abbey S. Maths tutor

3578 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the line that is perpendicular to the line 3x+5y=7 and passes through point (-2,-3) in the form px+qy+r=0


Prove that 2 cot (2x) + tan(x) == cot (x)


Use the geometric series formula to find the 9th term in this progression : 12 18 27...


A child of m1=48 kg, is initially standing at rest on a skateboard. The child jumps off the skateboard moving horizontally with a speed v1=1.2 ms^-1. The skateboard moves with a speed v2=16 ms^-1 in the opposite direction. Find the mass of the skateboard.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences