A curve has equation y = f(x) and passes through the point (4, 22). Given that f ′(x) = 3x^2 – 3x^(1/2) – 7, use integration to find f(x), giving each term in its simplest form.

Firstly we can use the difference rule to split f'(x) into three components which we can consider separately. Then using the knowledge that the integral of x^n is 1/(n+1)*x^(n+1) we get the expression for f(x) as x^3 - 2x^(3/2) - 7x + C where C is an unknown constant.We find C by using the other information the question gives us- that when x=4, y =22. Plugging this into f(x) gives us the equation 22 = 20 +C, so C = 2. The final expression is therefore f(x) = x^3 - 2x^(3/2) - 7x + 2.

AS
Answered by Abbey S. Maths tutor

3798 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sketch, on a pair of axes, the curve with equation y = 6 - |3x+4| , indicating the coordinates where the curve crosses the axes, then solve the equation x = 6 - |3x+4|


Do the circles with equations x^2 -2x + y^2 - 2y=7 and x^2 -10x + y^2 -8y=-37 touch and if so, in what way (tangent to each other? two point of intersection?)


Differentiate y = x sin(x)


Determine the coordinates of all the stationary points of the function f(x) = (1/3)*x^3+x^2-3*x+1 and state whether they are a maximum or a minimum.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning