How can I find the equation of a line l which passes through the points (5,7) and (3, -1)

First thing first, we should always write down the equation of a straight line (which is y = mx + c) as this will be important for this question.In order to find the equation of the straight line l we need to work out the gradient of the line between the two points and the y intercept of the line.Finding the gradient of the line (m):The formula we need to use to find the gradient is m = (difference in y values)/(difference in x values).In this example, the difference in y values = 7 - - 1 = 8 and the difference in x values = 5 - 3 = 2.Therefore the gradient m = 8/2 = 4.Finding the y-intercept:Since we have found the gradient of the line, our equation of our line l currently looks like y = 4x + c.To find c, we can substitute one of our points into our equation for l. If we substitute the point (3, -1) into our equation we get: -1 = 4(3) + c so c = -13.Therefore, the equation of the line l must be y = 4x - 13

KC
Answered by Katie C. Maths tutor

9025 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I use the chain rule to differentiate polynomial powers of e?


Show that tan(x) + cot(x) = 2cosec(2x)


Find ∫ x^2(ln(4x))dx


Do the circles with equations x^2 -2x + y^2 - 2y=7 and x^2 -10x + y^2 -8y=-37 touch and if so, in what way (tangent to each other? two point of intersection?)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning