How can I find the equation of a line l which passes through the points (5,7) and (3, -1)

First thing first, we should always write down the equation of a straight line (which is y = mx + c) as this will be important for this question.In order to find the equation of the straight line l we need to work out the gradient of the line between the two points and the y intercept of the line.Finding the gradient of the line (m):The formula we need to use to find the gradient is m = (difference in y values)/(difference in x values).In this example, the difference in y values = 7 - - 1 = 8 and the difference in x values = 5 - 3 = 2.Therefore the gradient m = 8/2 = 4.Finding the y-intercept:Since we have found the gradient of the line, our equation of our line l currently looks like y = 4x + c.To find c, we can substitute one of our points into our equation for l. If we substitute the point (3, -1) into our equation we get: -1 = 4(3) + c so c = -13.Therefore, the equation of the line l must be y = 4x - 13

KC
Answered by Katie C. Maths tutor

9585 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the minimum value of the function, f(x) = x*exp(x)


How do you solve the integral of ln(x)


Derive double angle formulas from addition formulae


What actually are sin, cos and tan?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning