Find the inverse of y = (5x-4) / (2x+3)

the aim of finsing the inverse is making x the subject. To start we need to multiply both sides by: (2x+3), giving us:

y(2x+3) = 5x-4

now we need to expand the brackets:

2xy +3y = 5x-4

now gather all the x components on the same side:

2xy - 5x = -4-3y

now factorise the left hand side:

x(2y-5) = -4-3y

now make x the subject, giving us:

x =(-4-3y) / (2y-5)

therefore, the inverse is written in terms of x, which gives us:

f-1(x) = (-4-3y) / (2y-5)

XA
Answered by Xuanyi A. Maths tutor

5446 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to differentiate y = xcos(x)


Sketch the graphs of y = f(x), y = g(x) and find the point(s) where f and g intersect.


Show that x^2 +6x+ 11 can be written as (x+p)^2 +q


How can I find the equation of a line l which passes through the points (5,7) and (3, -1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences