For the curve y = 2x^2+4x+5, find the co-ordinates of the stationary point and determine whether it is a minimum or maximum point.

Stationary points occurs when the gradient of the graph is equal to 0, i.e. dy/dx = 0. Differentiate y with respect to x to get dy/dx = 4x + 4.So making 4x + 4 = 0 gives x = -1. Substituting this into the original equation for y will give the the y co-ordinate, y = 3.Finding the rate of change of the gradient at the stationary point tells us whether it is minimum or maximum. Doing this gives d2y/dx2 = 4. Since this is greater than 0 the stationary point at (-1,3) is a minimum point.

OB
Answered by Owen B. Maths tutor

5393 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

At x=3, is the polynomial y= (4/3)x^3 -6x^2 + 11 at a maxima or minima?


Differentiate y = 2x^3 + 6x^2 + 4x + 3 with respect to x.


If (m+8)(x^2)+m=7-8x has two real roots show that (m+9)(m-8)<0 where m is an arbitrary constant


A and B have coordinates (2,3) and (5,15), respectively. Together they form line l. Find the equation for the line r that goes through C(7,-2) and is perpendicular to l. Give the answer in the format of y=mx+b


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning