Find R and a such that 7*cos(x)+3*sin(x)=Rcos(x-a)

Use the cosine trig identity, cos(a-b)=cos(a)cos(b)+sin(a)sin(b) ,to write Rcos(x-a) as R(cos(x)cos(a)+sin(x)sin(a)).Now we can equate the coefficients of the sines and cosins on either side of the equation givingRcos(a)=3 , and Rsin(a)=7Now knowing Pythagoras's theorem we can square these equations and sum themR^2 * cos(a)^2 + R^2 * sin(a)^2 = 3^2 + 7^2 (factor out the R^2)= R^2(cos(a)^2+sin(a)^2)=3^2+7^2 (by Pythagoras cos(a)^2+sin(a)^2=1)so we have R^2=3^2+7^2 so R=sqrt(7^2+3^2).Now we need to find a.We know that tan(a)=sin(a)/cos(a)so using this we can writeRsin(a)/Rcos(a)=tan(a)=3/7 hence a=arctan(3/7) = 0.404...

DY
Answered by Darius Y. Maths tutor

6300 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The point A lies on the curve with equation y = x^(1/2). The tangent to this curve at A is parallel to the line 3y-2x=1. Find an equation of this tangent at A. (PP JUNE 2015 AQA)  


How do you differentiate using the chain rule?


How will you simplify (3 xsquare root of 2) to the square?


Find the equation of the tangent to the unit circle when x=sqrt(3)/2 (in the first quadrant)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning