Prove that 1/(tanx) + tanx = 1/sinxcosx

The key here is to realise that tanx = sinx/cosx. If we write out the left hand side of the equation in terms of sine and cosine we get: cosx/sinx + sinx/cosx These two fractions can be put over a common denominator of sinxcosx to give: (cos2x + sin2x)/sinxcosx If we then use the well-known identity cos2x + sin2x = 1, we see that the above expression is equivalent to 1/sinxcosx, which is the expression we were required to find.

HM
Answered by Hannah M. Maths tutor

22203 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you derive the quadratic formula?


given that y = 1 when x = π, find y in terms of x for the differential equation, dy/dx = xycos(x)


Solve the equation 5^(2x) - 12(5^x) + 35 = 0


What does it mean to differentiate a function?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning