√3(√30 + √8) can be simplified into the follwing format: x√10 + y√6 where are x and y are integers. Find the value of x and y.

Begin by expansion (√a x √b = √ab): √3 x √30 = √90 and √3 x √8 = √24. Therfore we have: √90 + √24. Simplify roots (√a^2√b). The question tells us we need x√10 so therefore √90 = √9√10 (9x10 = 90) and we need y√6 so therefore √24 = √4√6 (4x6 = 24). Simplify square roots further: √9 = 3 or -3 and √4 = 2 or -2. The questions aks for x and y to be integers (positive whole numbers) so the final answer is:3√10 + 2√6 therefore x = 3 and y = 2

HD
Answered by Holden D. Maths tutor

3872 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Quadratic Equations and factorising


Solve algebraically the simultaneous equations: x^2+y^2 = 25 and y-3x=13


Find the roots of the formula x^2 + 4x + 3 by factorising.


Three points have coordinates A(-8, 6), B(4, 2) and C(-1, 7). The line through C perpendicular to AB intersects AB at the point P. Find the equations of the line AB and CP.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences