If y=(a^(Sinx)) where a and k are given constants, find dy/dx in terms of a and x

Here we have to differentiate a constant raised to the power of a variable. To make it easier, let u=sinx and so our function can now be treated as y=a^u. Remembering that A = e^(LnA), a^u = e^(Ln(a^u)). Using our log laws, we know that Ln(a^u) = uLn(a). This is now much easier to approach. Since a is a constant, Ln(a) is also a constant. Therefore the derivative (with respect to u) of e^(uLn(a)) is simply Ln(a)e^(uLn(a)). Remembering that a^u = e^(Ln(a^u)), we can rewrite this as Ln(a)a^u.
So we have worked out dy/du. Going back to our u=sinx, we know that du/dx=cosx.The question asks for dy/dx. Using the chain rule, we know that dy/dx = (dy/du)
(du/dx)
So dy/dx = Cos(x)Ln(a)(a^sinx)

MD
Answered by Maninder D. Maths tutor

2780 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A block mass m lies on an incline rough plane, with coefficient of friction µ. The angle of the block is increased slowly, calculate the maximum angle of the slope that can be achieved without the block slipping.


Simplify (􏰀36x^−2)􏰁^ 0.5


The lines y = 3x² - x + 5/2 intersects the line y = x/2 +7 at two points. Give their coordinates. Show your working


find the derivative of the following equation: a) y = 5x^3 - 4x^-4 + xb


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences