Evaluate the following : ∫ln(x) dx

Integrate by parts:u = ln(x) u' = 1/x v' = 1 v = xBy parts formula: uv - ∫u'v dx Therefore we have: xln(x) - ∫x1/x dx = xln(x) - ∫1 dx = xln(x) - x (+c)

SM
Answered by Saaqib M. Maths tutor

6259 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I solve a cubic?


How would you differentiate the term 3x^3-2x^2+x-10


The equation kx^2 + 4x + (5 – k) = 0, where k is a constant, has 2 different real solutions for x. Show that k satisfies k^2-5k+4>0.


Show by induction that sum_n(r*3^(r-1))=1/4+(3^n/4)*(2n-1) for n>0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning