Differentiate: ln((e^x+1)/e^x-1))

Chain rule: First resolve the log differential, then resolve the fraction integration either by knowing the formula for it or by writing (e^x+1)/(e^x-1) as (e^x+1)(e^x-1)^(-1) and applying chain rule againLet’s assume that the formula for the fraction differential is not known
dy/dx= (e^x-1)/(e^x+1) * (e^x*(e^x-1)^(-1)-e^x*(e*x+1)(e^x-1)^(-2))
After the differential has been resolved further simplification can be obtained by putting the same denominator in the large brackets and then realising that some of it can be simplified with the first fraction of the equation
dy/dx= (e^x-1)/(e^x+1) * (e^2x-2e^x-e^2x)/(e^x-1)^2)dy/dx= (-2e^x)/(e^2x-1)

MV
Answered by Mihai V. Maths tutor

3015 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Two masses A and B, 2kg and 4kg respectively, are connected by a light inextensible string and passed over a smooth pulley. The system is held at rest, then released. Find the acceleration of the system and hence, find the tension in the string.


Differentiate y= exp(cos^2(x)+sin^2(x)) by using the chain rule.


Given that y=4x^3-(5/x^2) what is dy/dx in it's simplest form?


Find the coordinates of the point of intersection between the line L:(-i+j-5k)+v(i+j+2k) and the plane π: r.(i+2j+3k)=4.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences