Differentiate: ln((e^x+1)/e^x-1))

Chain rule: First resolve the log differential, then resolve the fraction integration either by knowing the formula for it or by writing (e^x+1)/(e^x-1) as (e^x+1)(e^x-1)^(-1) and applying chain rule againLet’s assume that the formula for the fraction differential is not known
dy/dx= (e^x-1)/(e^x+1) * (e^x*(e^x-1)^(-1)-e^x*(e*x+1)(e^x-1)^(-2))
After the differential has been resolved further simplification can be obtained by putting the same denominator in the large brackets and then realising that some of it can be simplified with the first fraction of the equation
dy/dx= (e^x-1)/(e^x+1) * (e^2x-2e^x-e^2x)/(e^x-1)^2)dy/dx= (-2e^x)/(e^2x-1)

MV
Answered by Mihai V. Maths tutor

3474 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

how find dy/dx of parametric equations.


How do I integrate and differentiate 1/(x^2)?


A curve has equation -2x^3 - x^2 + 20x . The curve has a stationary point at the point M where x = −2. Find the x-coordinate of the other stationary point of the curve.


3. The point P lies on the curve with equation y=ln(x/3) The x-coordinate of P is 3. Find an equation of the normal to the curve at the point P in the form y = ax + b, where a and b are constants.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning