How would I go about finding the coordinates minimum point on the curve eg y = e^(x) - 9x -5?

In order to find the coordinates of the minimum point of any curve y = f(x), you must differentiate the equation of the curve with respect to x and then equate it to zero.In this case, the differential of the curve is: dy/dx = e^(x) - 9
Equating this to zero you find that e^x = 9.
Therefore x = ln(9)
Substituting this back int the original equation for the curve to find y: y= e^(ln(9)) - 9ln(9) - 5 , noticing that the e^ ln cancel out.
Thus, x = ln(9) and y = 9-5 - 9ln(9) = 4 - 9ln(9)

TR
Answered by Theo R. Maths tutor

3361 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to "study" A-level Maths, not just learn?


Shower-cleaner liquid is sold in spray bottles. The volume of liquid in a bottle may be modelled by a normal distribution with mean 955 ml and a standard deviation of 5 ml. Determine the probability that the volume in a particular bottle is:


If y = 1/x^3, find an expression for dy/dx


two balls of similar size masses m and 2m are moving at speeds u and 2u along a frictionless plane, they collide head on and are reflected, assuming that the coefficient of restitution of this collision is 1, what the speeds are afterwards in u


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences