How would I go about finding the coordinates minimum point on the curve eg y = e^(x) - 9x -5?

In order to find the coordinates of the minimum point of any curve y = f(x), you must differentiate the equation of the curve with respect to x and then equate it to zero.In this case, the differential of the curve is: dy/dx = e^(x) - 9
Equating this to zero you find that e^x = 9.
Therefore x = ln(9)
Substituting this back int the original equation for the curve to find y: y= e^(ln(9)) - 9ln(9) - 5 , noticing that the e^ ln cancel out.
Thus, x = ln(9) and y = 9-5 - 9ln(9) = 4 - 9ln(9)

TR
Answered by Theo R. Maths tutor

3391 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = 4x / (x^2 + 5). Find dy/dx.


How can do you factorize the equation x^2+6x+8


Calculate the derivative of the following function: f(x)=cos(3x))^2


Find dy/dx when y = x(4x + 1)^1/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning