What is the angle between the position vectors a and b, where a = (6i - j + 3k) and b = (-4i + 2j + 10k)?

  • Google+ icon
  • LinkedIn icon
  • 721 views

cos(AOB) = a.b/(|a| x |b|)

a.b = (6i - j + 3k).(-4i + 2j + 10k)

      = (6 x -4) + (-1 x 2) + (3 x 10)

      = -24 + -2 + 30

      = 4

(|a|)^2 = 6^2 + (-1)^2 + 3^2

          = 36 + 1 + 9 = 46

          -> |a| = 46^(1/2)

(|b|)^2 = (-4)^2 + 2^2 + 10^2

          = 16 + 4 + 100 = 120

          -> |b| = 120^(1/2) = 2 x 30^(1/2)

cos(AOB) = a.b/(|a| x |b|)

               = 4/(46^(1/2) x 2 x 30^(1/2))

               = 4/(4 x 345^(1/2))

               = 1/(345^(1/2))

AOB = cos^-1 (1/(345^(1/)))

        = 86.9 degrees(3 significant figures)

David H. GCSE Biology tutor, A Level Biology tutor, GCSE Maths tutor,...

About the author

is an online A Level Maths tutor with MyTutor studying at Exeter University

Still stuck? Get one-to-one help from a personally interviewed subject specialist.

95% of our customers rate us

Browse tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok