Solve the simultaneous equations: 3x + 4y = 5 and 2x – 3y = 9

To solve a simultaneous equation we use a method known as elimination. We choose to 'eliminate' or remove the X or Y term. To 'eliminate' x we must firstly determine the lowest common multiple 3 and 2 (as these are the values in front of x in both equations). The lowest common multiple is 6. Therefore, we multiple the first equation by 2 and the second by 3. This gives: 6x + 8y = 10 and 6x - 9y = 27. To 'eliminate' x when can then subtract the second equation from the first. This give us: 17y=-17. Thus, y = -1. We can then substitute y = -1 into the first equation such that 3x+4=5. Rearranging this equation gives, 3x=9. Hence x=9/3=3. Therefore, x=3 and y=-1.

PG
Answered by Prasanna G. Maths tutor

5359 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to find the coordinates of the turning points of a curve on a graph


expand and simplify (x+4)(x-2)^2


Solve the simultaneous equations 8x+2y=34 and 4x+2y=18


n is an integer such that 3n + 2 < 14 and 6n/(n^2+5) > 1. Find all possible values of n.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences