n is an integer such that 4n+6≤18 and 5n/(n^2+4)>1. Identify the range of possible values of n.

To solve the first inequality, you need to subtract 6 from both sides of the inequality, to obtain 4n≤12. This can then be cancelled down to n≤3 by dividing both sides by 4. To solve the second inequality, we first need to eliminate the fraction by multiplying both sides of the inequality by the denominator, obtaining 5n>n^2+4. Since this inequality involves a quadratic expression, we need to convert it into the form of an^2+bn+c<0 before attempting to solve it. In this case, we subtract 5n from both sides of the inequality to obtain n^2-5n+4<0. The next step is to factorise this inequality. To factorise we must find two numbers that can be added to obtain -5 and that can be multiplied to obtain 4. Quick mental mathematics will tell you that these two numbers are -4 and -1 (for inequalities that are more difficult to factorise mentally, you can just use the quadratic equation that can be found in your data booklet) so we can write the inequality as (n-4)(n-1)<0. For inequalities where the co-efficient of n^2 is positive and the the inequality is <0, the range of n must be between the two values of n whereby the factorised expresion equals zero, which are n=1 and n=4. Therefore, the solution is 1<n<4 and we can check this by substituting in n=3, which satisfies the inequality since (3-4)(3-1)=-2<0. Since n is an integer, the expressions n≤3 and n<4 are the same. Therefore, we can write the final answer as either 1<n<4, or n>1 and n≤3. 




HS
Answered by Hakeem S. Maths tutor

6501 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the value of X when 3x^2 + 6x + 3 = 0


A shape consists of a quarter circle (radius r = 4cm) attached to a triangle (side length = 4cm and hypotenuse = 5cm). This shape is surrounded by a square (side length 8cm). If the shape is coloured in, what is the area in the square that is uncoloured?


Factorise x^2 + 3x -28


Solve x^2 - 3x - 10 = 0 for x by a) factorising and b) the quadratic equation. Then draw a graph of the function, marking when it touches each of the axes.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning