Using factorization, solve x^2 + 10x + 24 = 0

To factorize the equation we need to find two numbers a and b such that
a * b = 24 and
a + b = 10
By closely looking at those, we find that 4 and 6 satisfy both conditions, as
6 + 4 = 10 and
6 * 4 = 24
The next step is to split the middle term 10x into 6x + 4x, getting
x^2 + 6x + 4x + 24 = 0
Now we group the first two and the last two terms
x(x + 6) + 4(x + 6) = 0 Therefore,
(x+6)(x+4) = 0
For this to be true, at least one of the brackets needs to be 0.
For x + 6 = 0 we get x = -6
For x + 4 = 0 we get x = -4
Therefore, the set of solutions is S = {-6, -4}

SS
Answered by Sebastian-Stefan S. Maths tutor

7769 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do i find 30% of 70?


In a sale, the original price of a bag was reduced by 1/5. The sale price of the bag is £29.40. Work out the original price.


Make a the subject of the formula f=(a+1)/2


A cuboid has sides such that the longest side is two units more than the shortest side, and the middle length side is one unit longer than the shortest side. The total surface area of the cuboid is 52 units². What is the length of the shortest side?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences