Using factorization, solve x^2 + 10x + 24 = 0

To factorize the equation we need to find two numbers a and b such that
a * b = 24 and
a + b = 10
By closely looking at those, we find that 4 and 6 satisfy both conditions, as
6 + 4 = 10 and
6 * 4 = 24
The next step is to split the middle term 10x into 6x + 4x, getting
x^2 + 6x + 4x + 24 = 0
Now we group the first two and the last two terms
x(x + 6) + 4(x + 6) = 0 Therefore,
(x+6)(x+4) = 0
For this to be true, at least one of the brackets needs to be 0.
For x + 6 = 0 we get x = -6
For x + 4 = 0 we get x = -4
Therefore, the set of solutions is S = {-6, -4}

SS
Answered by Sebastian-Stefan S. Maths tutor

7801 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How is the quadratic formula used?


Solve the equation (4x-3)/2 + (7x+1)/6 = 29/2.


Solve the simultaneous equation by elimination: 3x + y = 11 and 5x + y = 4


A bag contains only apple and oranges. The probability an apple is picked randomly is 1 in 5. The apple is returned, and five more apples are added to the bag. The probability of an apple being picked is now 1in 3. How many apples were there originally?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences