Integrate sin^2(x) with respect to x

use trigonometric identities i.e. Cos(2x) = Cos2(x) - Sin2(x) (a) Cos2(x) + Sin2(x) = 1 (b)Therefore: Cos2(x) = 1 - Sin2(x) (c)Combining (a) and (c) we achieve Cos(2x) = 1 - 2 Sin2(x)Rearranging we achieveSin2(x) = (1/2) - (1/2) Cos(2x)Therefore integrating with respect to x∫Sin2(x) dx = ∫ (1/2) - (1/2)Cos(2x) dx= (x/2) - (1/4)Sin(2x) + C

OL
Answered by Oscar L. Maths tutor

3553 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate ((7e^(x/2))/4) with respect to x within the bounds of x=0 and x=2. (Basic introduction to definite integration)


Express 3(x^2) - 12x + 5 in the form a(x - b)^2 - c.


find the coordinate of the maximum value of the function f(x) = 9 – (x – 2)^2


Find the values of y such that log2(11y-3)-log2(3)-2log2(​y) = 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences