Integrate sin^2(x) with respect to x

use trigonometric identities i.e. Cos(2x) = Cos2(x) - Sin2(x) (a) Cos2(x) + Sin2(x) = 1 (b)Therefore: Cos2(x) = 1 - Sin2(x) (c)Combining (a) and (c) we achieve Cos(2x) = 1 - 2 Sin2(x)Rearranging we achieveSin2(x) = (1/2) - (1/2) Cos(2x)Therefore integrating with respect to x∫Sin2(x) dx = ∫ (1/2) - (1/2)Cos(2x) dx= (x/2) - (1/4)Sin(2x) + C

OL
Answered by Oscar L. Maths tutor

3418 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has equation: y = x^2 − 2x − 24x^1/2, x > 0; Find (i) dy/dx (ii) d^2y/dx^2


How do you find the gradient of a parametric equation at a certain point?


Solve the inequality 􏰂|2x + 1|􏰂 < 3|􏰂x − 2|􏰂.


A curve has the equation: x^2(4+y) - 2y^2 = 0 Find an expression for dy/dx in terms of x and y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences