A ship is 180 kilometres away from a port P on a bearing of 63 degrees. Another ship is 245 kilometres away from port P on a bearing of 146 degrees. Calculate the distance between the two ships.

While this problem could be done simply by inputting the appropriate numbers into the correct formula, it is good practice to draw a diagram of the problem in order to minimise any silly mistakes that may be made. Upon drawing the diagram you should be able to see that the placement of the two ships(which we can call A and B) and the port make a triangle and that the information you are given enables you to use the cosine rule to calculate the distance between the two ships.
We can calculate the angle between ship A and ship B is (146-63), since the bearing of ship B is taken from port. The distance between the two ships can be assigned to the variable c.The values are substituted into the cosine rule to result in : c^2 = (180^2) + (245^2) -(2180245*cosC)This is simplified to: c^2 = 81676.12Therefore c = 285.8 kilometres.

SG
Answered by Saeed G. Maths tutor

7919 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A scalene triangle ABC has side lengths AB=6cm, BC=4cm, and AC=x cm. The angle A, opposite BC, is 40 degrees and the angle B, opposite AC, is 50 degrees. State the sine rule and use it to find the value of x to 3 s.f.


There are 35 people in a group. x(x+1) of them have a blue car, 5x of them have a red car, 4 have a blue and a red car and 4x-8 do not have car. Work out the probability that a person who has a blue car, has a red car as well.


The two points (4,9) and (2,3) are on line A. A second line, line B is perpendicular to line A and goes through the point (2,3). What is the equation of line B?


A ladder 5m long is leaning up against a wall. The foot of the ladder is 3m from the wall. How high up the wall does the ladder reach?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning