Solve the simultaneous equations: 2x + 3y = 28 and x + y = 11

As the number of equations is the same as the number of unknowns, there is exactly one solution!

We start by labelling the two equations:

2x + 3y = 28 (1)

x + y = 11 (2)

There is more than one way to approach this. We only need to use one approach, but let's consider two different methods here.

Method 1

We can use substitution. We start by making the coefficient of one of our unknown values the same in both equations; in the first equation, we have the term "2x" and in the second equation we have the term "x". We can multiply both sides of the second equation by 2 in order to have a term in "2x".

So let's start by multiplying the second equation by 2:

2*(2): 2x + 2y = 22

We can now subtract this from the first equation:

(1)-2*(2): 2x + 3y - 2x - 2y = 28 - 22

so y = 6

We've found y! To find x, we can substitute our value for y into either of the two equations. Let's substitute it into equation (2). We see:

x + 6 = 11

so x = 5

We have now found both unknowns. We know from the previous step that equation (2) is satisfied. In order to check our answer, it is a good idea to substitute both unknowns into equation (1):

LHS (the left hand side of the equation) = 2x + 3y

= 2*5 + 3*6

= 10 + 18

= 28

= RHS (the right hand side of the equation)

Both equations are satisfied, so we know that we have found the correct answer.

Method 2

We can solve simultaneous equations by elimination. We start by making one of our unknowns the subject of one of our equations. Let's make y the subject of equation (2). We simply subtract x from both sides, so:

y = 11 - x

We can now substitute this into equation (1); we write (11 - x) instead of y as they are the same. So (1) becomes:

2x + 3(11 - x) = 28

2x + 33 - 3x = 28

33 - x = 28

33 = 28 + x

x = 5

We've found x, and now we can find y and check our answer in the same way as in Method 1.

Harry H. A Level Maths tutor, IB Maths tutor, GCSE Maths tutor, 11 Pl...

1 year ago

Answered by Harry, a GCSE Maths tutor with MyTutor

Still stuck? Get one-to-one help from a personally interviewed subject specialist


£18 /hr

Dan W.

Degree: Economics and Accounting (Bachelors) - Bristol University

Subjects offered:Maths, Economics


“I achieved top grades whilst juggling cricket at a high level. I’ve tutored for Young Einstein Tuition & been a Peer Mentor to those facing personal issues”

£18 /hr

Emma B.

Degree: Mechanical Engineering (Masters) - Southampton University

Subjects offered:Maths, Physics+ 1 more

Design & Technology

“A positive and bubbly tutor who will put 100% into helping your child succeed and discover their passion for learning!”

£18 /hr

Shivani M.

Degree: Medicine (Bachelors) - Exeter University

Subjects offered:Maths, Chemistry+ 4 more

.BMAT (BioMedical Admissions)
-Medical School Preparation-

“I graduated with 5 A-levels last year and now study medicine at Exeter. I have mentored GCSE maths students for the last 2 years. I would love to hear from you!”

About the author

Harry H.

Currently unavailable: for regular students

Degree: Mathematics (Bachelors) - Durham University

Subjects offered:Maths, Physics+ 1 more

Further Mathematics

“Hello, I’m Harry and I’m currently in my final year reading Mathematics at Durham University and have achieved a First overall so far. I received 3 A*s at A-Level in Maths, Further Maths and Physics. My approach I have loved helpin...”

You may also like...

Posts by Harry

Solve the simultaneous equations: 2x + 3y = 28 and x + y = 11

The normal price of a television is £1200. It is reduced to £970. Work out the percentage reduction. Give your answer to 1 decimal place.

Other GCSE Maths questions

Find x and y of these two equations: 2x - 3y = 13 and 3x + y = 3

Find the point of intersection between two lines y=2x+4 and 2y+3x=1:

Find the values of a, b and c in the equation: (5x + 3)(ax + b) = 10x^2 + 11x + c.

For a cuboid, the longest side is two units more than the shortest side, and the middle length side is one unit longer than the shortest side. The total surface area of the cuboid is 52 units². (a) Construct an equation to calculate the surface area.

View GCSE Maths tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss