Solve the following simultaneous equations: 4x + 5y = -8 and 6x-2y = 26

1) Multiply both equations so we have the same coefficient of one of the variables. This allows us to eliminate one of the variables and solve for the other. (4x + 5y = -8) --> Multiply by 3 so we have (12x + 15y = -24) and (6x - 2y = 26) --> Multiply by 2 so we have (12x - 4y = 52). 2) Subtract the second equation for the first leading to (0x + 19y = -76). Divide both sides by 19 leading to (y = -4) 3) Substitute back into one of the original equations leading to 4x + 5(-4) = -84x -20 = -8 , 4x = 12, and finally x = 3. Hence we have the solution x = 3 and y = -4

MH
Answered by Maria H. Maths tutor

4261 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify 3(m + 4) – 2(4m + 1)


The perimeter of a right-angled triangle is 72 cm. The lengths of its sides are in the ratio 3 : 4 : 5 Work out the area of the triangle.


If angle x = 63 degrees, work out the remaining angle of this right-angled triangle


Solve the simultaneous equations (1) x + 3y = 7 and (2) 2x + y = 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences