Solve the following simultaneous equations: 4x + 5y = -8 and 6x-2y = 26

1) Multiply both equations so we have the same coefficient of one of the variables. This allows us to eliminate one of the variables and solve for the other. (4x + 5y = -8) --> Multiply by 3 so we have (12x + 15y = -24) and (6x - 2y = 26) --> Multiply by 2 so we have (12x - 4y = 52). 2) Subtract the second equation for the first leading to (0x + 19y = -76). Divide both sides by 19 leading to (y = -4) 3) Substitute back into one of the original equations leading to 4x + 5(-4) = -84x -20 = -8 , 4x = 12, and finally x = 3. Hence we have the solution x = 3 and y = -4

MH
Answered by Maria H. Maths tutor

4341 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve algebraically the following if there is a solution: x+y=3 2x+y=5 x^2+y=6


John and Tom take a test. John scores p marks. Tom scores three times what John scored. Their total score is 188. What was Tom's score?


If Q = P / (R (4 – t)), calculate the value of Q when P = 36, R = 3 and t = –2


solve the simultaneous equation: 3x+y=7, 2x+4y=8


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning